Surface Chemistry

Xander Tielens Leiden Observatory & Astronomy Department, University of Maryland

Tielens, 2005, Physics and chemistry of the interstellar medium, (Cambridge University Press, Cambridge UK) Tielens, 2021, Molecular Astrophysics, (Cambridge University Press, Cambridge UK)

CO reservoir

Building the Solar System's Organic

PAH reservoir

stars:

soot chemistry

shock chemistry

gas:

ion-molecule reactions cosmic-ray photolysis

comets: energetic processing asteroids:

hydrogenation
photolysis
thermal polymerization
ice-ion-molecule
ice segregation

Tielens 2011

hot core: ice evaporation ion-molecule reactions nebula:

UV & X ray photolysis radical reactions hydrocarbon chemistry Fischer-Tropsch shocks, intermittent accretion, diffusion

Take Home Message AH reservoir

Inventory

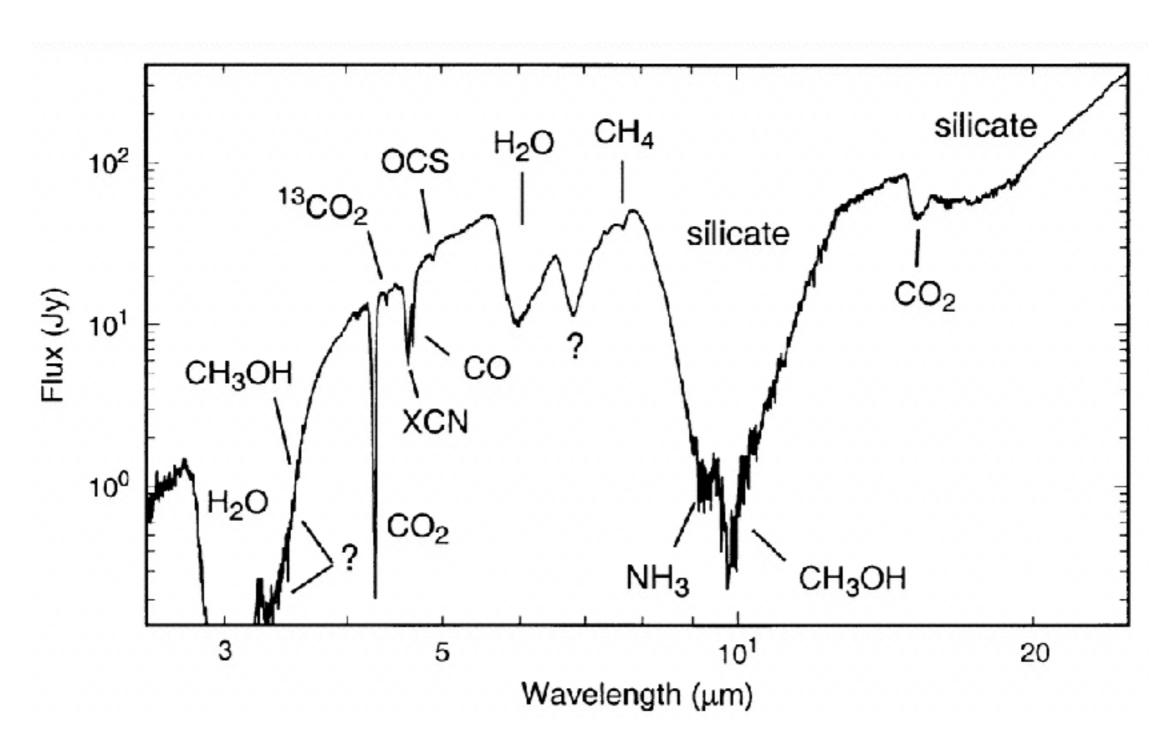
gas:

ion-molecule reactions

cosmic-ray photogas-grain interaction is at the core of molecular cloud chemistry

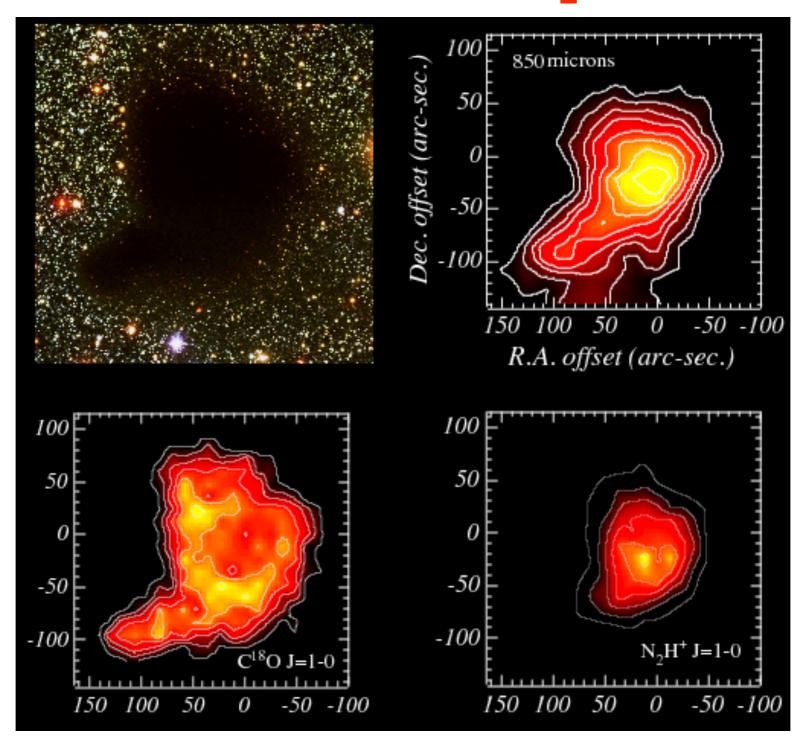
stars: soot chemistry shock chemistry

hydrogenation
photolysis
thermal polymerization
ice-ion-molecule
ice segregation


Tielens 2011

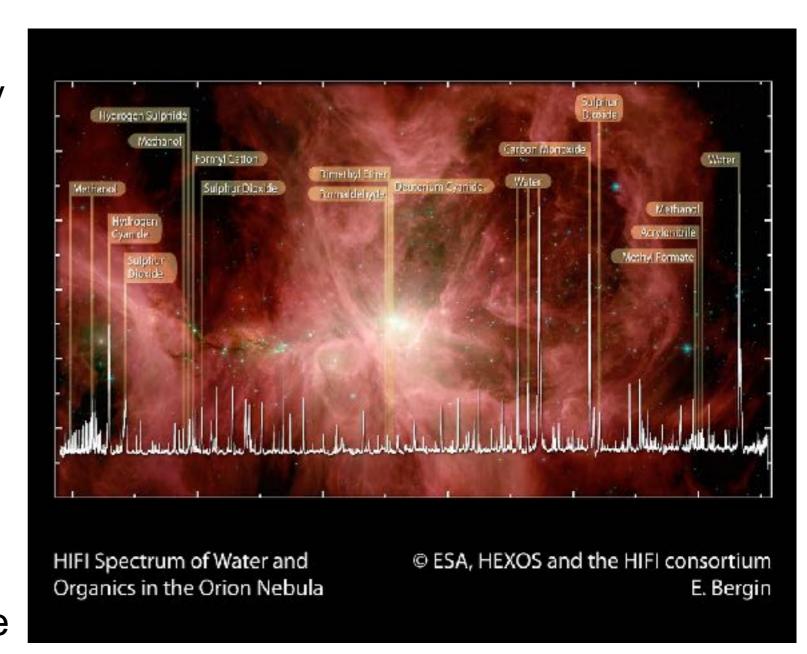
comets: energetic processing asteroids: aqueous alteration

nebula:
UV & X ray photolysis
radical reactions
hydrocarbon chemistry
Fischer-Tropsch
shocks, intermittent
accretion, diffusion


hot core: ice evaporation ion-molecule reactions

The Role of Dust

Ice as (cold) repository of material


Gas Phase Depletion

Depletion of many species in the densest cores

Simple Organic Molecules ("SOM")

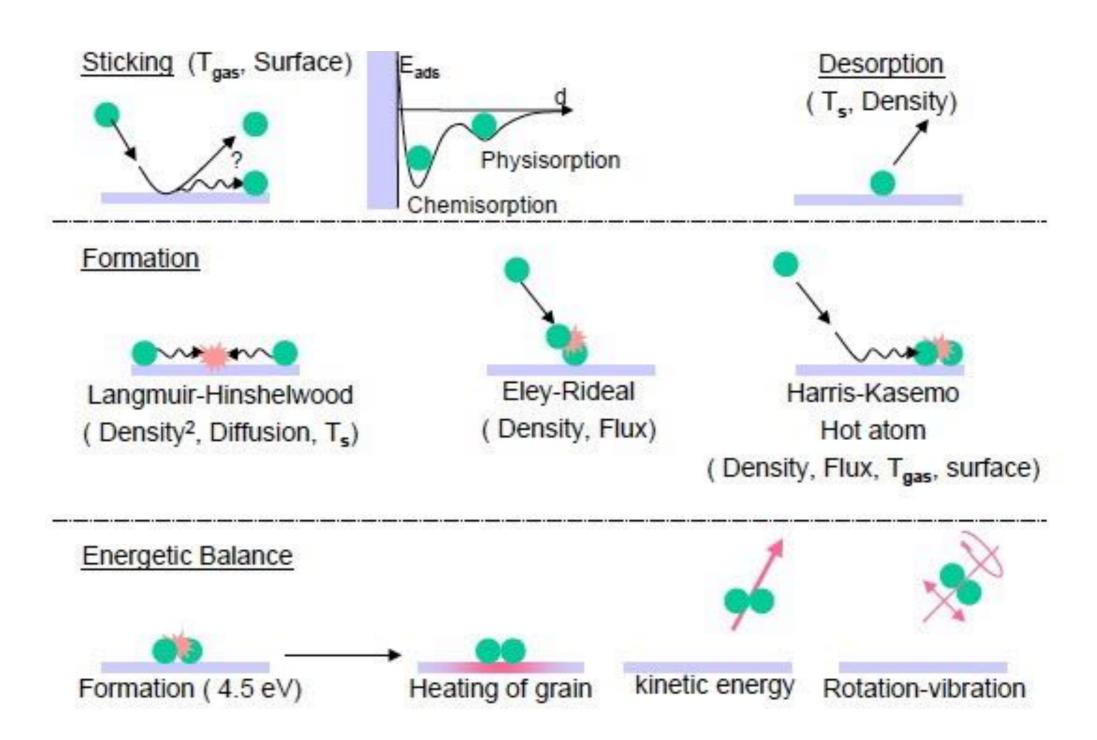
- Warm dense gas with rich organic inventory of relatively simple organic molecules
 - CH₃OH, CH₃CH₂OH,
 CH₃OCH₃, H₂CO, CH₃CHO,
 HCOOH, NH₂CHO, ...
 - HCN, CH₃CN, CH₃CH₂CN, ...
- Large deuterium fractionations
- Driven by evaporation of ice mantles formed in cold phase

Blake et al, 1987, ApJ, 315, 621 Ceccarelli et al, 2007, PPV, 47 Bergin et al 2010, A&A, 521, L20

Species	NGC 7538 IRS 9	W33A	Hale-Bopp comet
H ₂ O	100	100	100
CO (total)	10	1	23
CO (polar)	3	0.7	
CO (apolar)	7	0.3	
CO ₂	16	3	6
CO ₂ (polar)	9	1	
CO ₂ (annealed)	7	2	
CH ₃ OH	9	10	2
H ₂ CO	3	2	1
HCOOH	2	0.5	0.1
NH ₃	10	4	0.7
CH ₄	1	0.4	0.6
OCS	0.1	0.05	0.4
OCN-	0.8	1	

^a Relative to $H_2O = 100$. Adopted H_2O column densities are 10^{19} and 4×10^{19} cm⁻² for the massive protostars, NGC 7538 IRS 9 and W33A.

Composition of interstellar ices Very different from the gas phase!

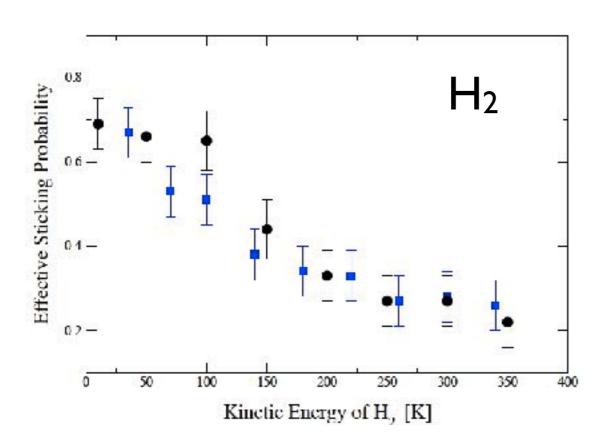

Grain Surface Chemistry: In a Nutshell

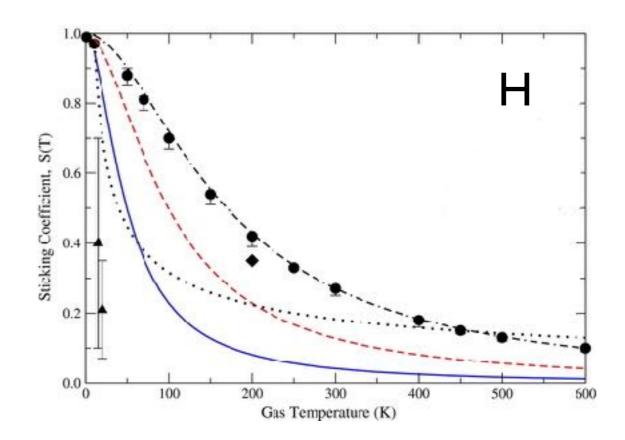
- Dust grains are the "watering holes" of astrochemistry where species come to meet and mate.
- In a way, collisions on a grain surface can take very long (up to hours or days)
- Tunneling is key to hydrogenation (and deuteration)
- Initial conditions play a key role
 - O goes to H₂O through e.g., O₂ and O₃
 - C (e.g., CO) goes to H₂CO and CH₃OH
 - N goes to NH₃ while N₂ is inert
 - S goes to SO/SO2 and CS goes to OCS (?)
 - D enrichment is driven by high D/H (gas) and high HD/H₂ on the grain

Characteristics of Interstellar Surface Chemistry

- Low pressures: $10^{-17} 10^{-13}$ mbar (UHV= 10^{-9} mbar)
- Low temperatures: I0–I00 K
- Low densities: 10–10⁴ cm⁻³
- Silicate grains + graphitic grains (diffuse clouds)
- Ice grains (molecular clouds)
 - Sizes: 5-1000 Angstrom & surface areas: $3 \times 10^2 10^8 \text{ Å}^2$
 - Limited # sites: $10^2 10^7$

Processes involved in Surface Chemistry


Sticking & Binding


Timescales

Accretion timescale: grain size, a, abundance X_i , and mass m_i

$$\tau_{ac} = (\pi a^2 v_i n_i)^{-1} = 7 \left(\frac{300 \,\text{Å}}{a} \right) \left(\frac{10^4 \, cm^{-3}}{n} \right) \left(\frac{10^{-4}}{X_i} \right) \left(\frac{m_i}{1 \, amu} \right) \quad \text{days}$$

Sticking

Have to transfer the kinetic energy, E_{kin} , to the surface atom in the collisions (hopping process). Energy transferred, ΔE , is related to:

$$\frac{\Delta E}{E_{kin} + E_b} = \frac{4\mu}{M}$$
 where μ and M are the reduced and total mass

At IOK, sticking coefficient ~I, even for H/H₂

Timescales

Accretion timescale: grain size, a, abundance X_i , and mass m_i

$$\tau_{ac} = (\pi a^2 v_i n_i)^{-1} = 7 \left(\frac{300 \,\text{Å}}{a}\right) \left(\frac{10^4 \, cm^{-3}}{n}\right) \left(\frac{10^{-4}}{X_i}\right) \left(\frac{m_i}{1 \, amu}\right) \text{ days}$$

Evaporation timescale: binding energy, E_b

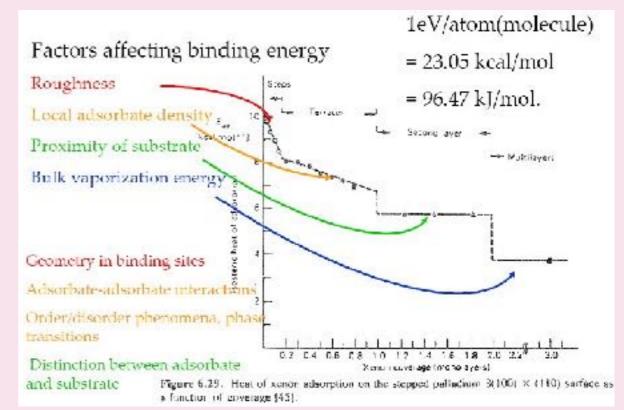
$$\tau_{ev} = \nu_0^{-1} \exp \left[E_b / kT \right]$$
 $\nu_0 = 1 - 4 \times 10^{12} \text{ s}^{-1}$

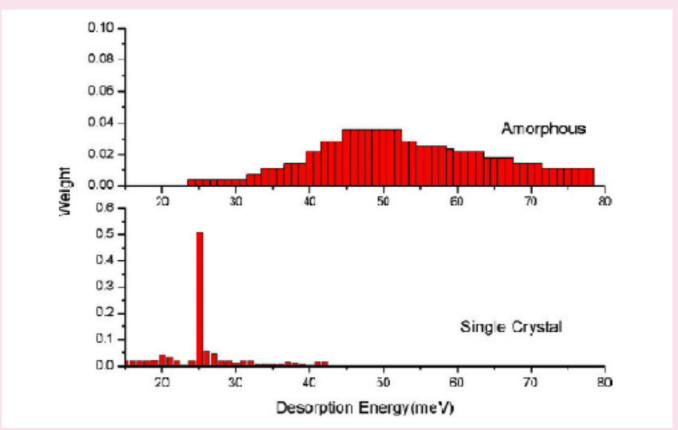
Thermal/tunneling migration timescale: barrier width, d

$$\tau_m \simeq \nu_0^{-1} \exp\left[0.3E_b/kT\right] \qquad \tau_m = \nu_0^{-1} \exp\left[\frac{2d}{\hbar}\sqrt{E_b m_i}\right]$$

Table 7.2: Binding energies of astrophysically relevant species and surfaces^a

species	α	ASW^b	graphite	silicate
-	10^{-24} cm^3	[K]	[K]	[K]
H	0.67	$450 - 850^{\circ}$	480^{h}	470g
D	0.63	545 - 980	530^{h}	520g
C	1.8	720^{d}		
N	1.1	720		
O	0.8	1300^{e}	1400	
H_2	0.79	$500 - 900^{c}$	530^{h}	520g
HD	0.79	$350 - 660^{\circ}$	550^{h}	540 ^g
D_2	0.78	$350 - 660^{\circ}$	560^{h}	550g
N_2	1.7	1435^{f}		
O_2	1.6	1200	1300	
O_3	3.1	1800	2100	
CO	1.95	1575^{f}		
CO_2	2.5	2500		
CH_4	2.45	1480^{i}		
NH_3	2.1	5530		
H_2O	1.5	5700		
H_2CO	2.8	3260		
CH_3OH	3.2	5400		
HCOOH	3.3	5600		


species	evaporation T _{ev} [s]	migration T _m [s]
H_2	9 (6)	3 (-6)
Н	4 (2)	2 (-8)
D	I (4)	3 (-8)
0	_	2 (-1)
С	_	2 (-3)
СО	_	<u>—</u>


Some species are highly mobile (H, D, H₂), some are sort of mobile (C,N, (O)), most are immobile (CO, OH, H₂O, ...) at low T

Binding energy

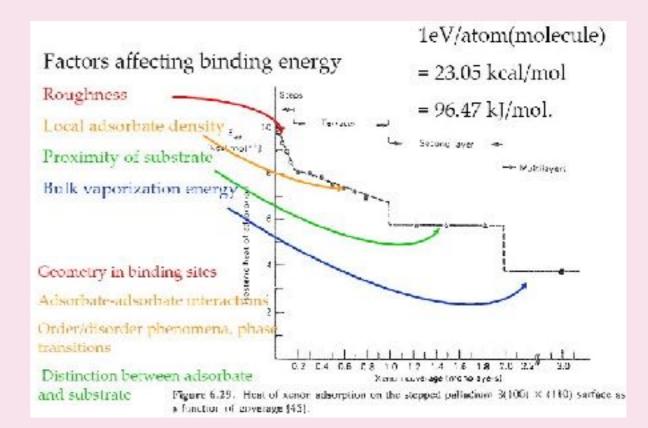
Factors influencing binding energy

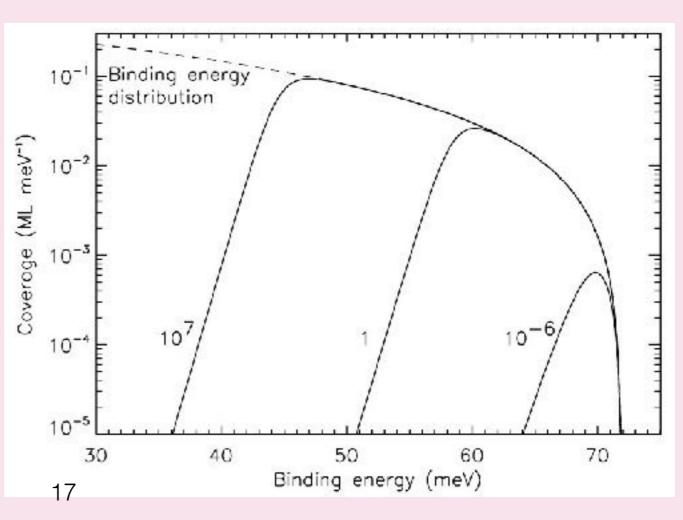
- Disorder (distribution of binding sites)
- Steps/kinks
- Interaction with adsorbates

Binding energy

Factors influencing binding energy

- Disorder (distribution of binding sites)
- Steps/kinks
- Interaction with adsorbates


Set by H₂ coverage:


$$\pi a^2 v_{\mathrm{H}_2} n_{\mathrm{H}_2} = v \exp\left[-E_b \left(\theta(\mathrm{H}_2)\right)/kT\right]$$

$$E_b(H) = \frac{\alpha(H)}{\alpha(H_2)} E_b(\theta(H_2))$$

At
$$n = 10^4 \text{ cm}^{-3}$$
, $E_b(\theta(H_2)) = 450 \text{ K}$

$$(\theta(H_2) \approx 0.2)$$
 and $E_b(H) = 350$ K.

Surface Migration

Surface diffusion is a random walk:

Timescale to visit each site (at least) once:

$$\tau_{scan} = N^2 \ln[N] \tau_m \ll \tau_{ev}$$
 at 10 K.

with N the number of sites.

If there is a coreactant radical, reaction will occur.

Note that low-T ice is highly porous and N may be as large as 10^{16} cm⁻².

Formation

Langmuir-Hinshelwood Reaction

Radical-radical reactions

	rea	ctants		products	1	react	ants		
Н	+	Н	\rightarrow	H ₂	O	+	O	\rightarrow	
Н	+	O	\longrightarrow	OH	O	+	N	\longrightarrow	
Н	+	OH	\longrightarrow	H_2O	O	+	C	\longrightarrow	
Н	+	C	\longrightarrow	CH	O	+	CN	\longrightarrow	
Н	+	CH	\longrightarrow	CH_2	O	+	HCO	\longrightarrow	
Н	+	CH	\longrightarrow	CH_3	C	+	N	\longrightarrow	
Н	+	CH_3	\longrightarrow	CH_4	C	+	HCO	\longrightarrow	
Н	+	N	\longrightarrow	NH	N	+	N	\longrightarrow	
Н	+	NH	\longrightarrow	NH_2	N	+	NH	\longrightarrow	
Н	+	NH_2	\longrightarrow	NH_3	N	+	HCO	\longrightarrow	
Н	+	O_2H	\longrightarrow	H_2O_2					
Η	+	NO	\longrightarrow	HNO					
Н	+	CN	\longrightarrow	HCN			reac	tion	١ (
Н	+	CN	\longrightarrow	HNC			Teac	JUUI	K
Н	+	CNO	\longrightarrow	HNCO			with	un	D
Н	+	HCO	\longrightarrow	H2CO			ŧ.	'	
Н	+	HCOO	\longrightarrow	HCOOH			OCCI	ט וג	H
Η	+	CH_3O	\longrightarrow	CH_3OH					
Н	+	NCHO	\longrightarrow	NHCHO					
Н	+	NHCHO	\longrightarrow	NH_2CHO					
Н	+	CCHO	\longrightarrow	CHCHO					
Н	+	CHCHO	\longrightarrow	CH_2CHO					

 N_2H_2

+ CH₂CHO → CH₃CHO

+ N₂H

reactions between radicals with unpaired electrons will occur on "collision"

products

 O_2

NO

CO

CN

 N_2

 N_2H

HNCO

OCN

HCOO

CCHO

Radical-Molecule Reactions

Some radical-molecule reactions can occur as they have no or submerged barriers:

•
$$H + O_2 \longrightarrow HO_2$$

•
$$H + O_3 \longrightarrow OH + O_2$$

Reactions with Activation Barriers

Competition between reaction and diffusion:

 p, p_0, p_m is reaction, barrier penetration, migration probability

$$p = \frac{p_0}{p_0 + p_m}, \text{ with } p_0 \ll p_m$$

$$p_0 = v_0 \exp\left[-\frac{2a}{\hbar}\sqrt{2mE_a}\right]$$

Number of times a site is visited that can lead to a reaction is: $n_r = \frac{\tau_{ev}}{\tau_m} \theta_i$

Probibility for reaction in the k^{th} visit,

 $p_k = (1-p)^{k-1} p$ and probability for reaction before evaporation:

$$p_r = \sum_{1}^{n_r} p_k = 1 - (1 - p)^{n_r} \approx n_r p = \tau_{ev} \theta_i p_0$$

With more than 1 possible coreactant, this probability becomes

$$\varphi_i = \frac{\theta_i p_0(i)}{\sum \theta_i p_0(i)}$$

22

Reactions with Activation Barriers

$oldsymbol{ heta}_r$	<i>E</i> _a [K]
10-6	3400
10 -1	7500

Activation barrier for a H reaction probability of p_r =0.5 and surface coverage, θ_r

H Reactions with Activation Barriers

Table 7.4: Reactions with activation barriers^a

reactants		products		E_a	a	<i>k</i>	refs	
					[K]	[Å]	s^{-1}	
Н	CO	\rightarrow	HCO		2740	0.65	6×10^{6}	[114, 56]
D	CO	\rightarrow	DCO		2580	0.65	4×10^{4}	[114, 56]
Н	H_2CO	\rightarrow	CH_3O		2104	0.77	3.7×10^{6}	[57, 45]
Н	D_2CO	\rightarrow	CHD_2O		2063	0.77	4.2×10^{6}	[57, 45]
Η	H_2CO	\rightarrow	HCO	H_2	2959	0.51	7.6×10^{7}	[57, 45]
Н	D_2CO	\rightarrow	DCO	HD	3520	0.51	2.3×10^{6b}	[57, 45]
Н	CH_3OH	\rightarrow	CH_2OH	H_2	3224	0.66	1.4×10^{6}	[77, 46, 47]
Н	CD_3OH	\rightarrow	CH_2OH	H_2	4219	0.66	2×10^{3}	[77, 46, 47]
D	CH_3OH	\rightarrow	CH_2OH	HD	3253	0.66	8.1×10^{5}	[77, 46, 47]
D	CH_2DOH	\rightarrow	CHDOH	HD	3330	0.66	6.7×10^{5}	[77, 46, 47]
D	CHD_2OH	\rightarrow	CD_2OH	HD	3430	0.66	4.2×10^{5}	[77, 46, 47]
Н	H_2O_2	\rightarrow	OH	H_2O	2508	0.45	7×10^{8c}	[81, 97]
D	H_2O_2	\rightarrow	OH	H_2O	2355	0.45	3×10^{7c}	[81, 97]

Reactions with H₂

At low T, surface coverage of H₂ is high. H₂ can also readily tunnel through activation barriers. Reaction has to occur before a mobile coreactant (H or O) accretes and finds and reacts with the species. Probability is:

$$p_r = \tau_{ac} \theta(\mathbf{H}_2) p_0$$

with $\tau_{ac} = 10^5$ s and $\theta(H_2) = 0.2$, the limiting $E_a \simeq 4700$ K.

This includes $OH + H_2 \rightarrow H_2O + H$ (note possible cascade).

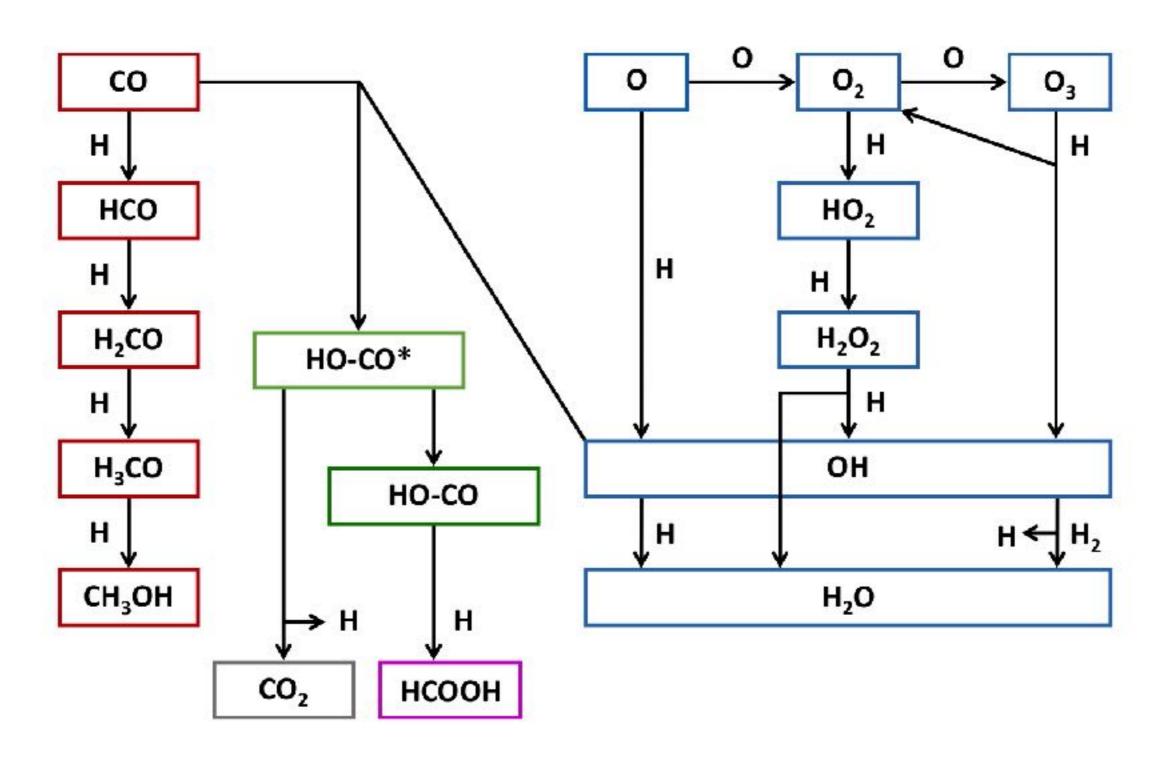
Reactions with H₂

Table 7.5: Reactions of H₂

coreactant	coreactant			$E_a{}^a$
				[K]
NH_2	\rightarrow	NH ₃	Н	3600
CH	\rightarrow	CH_2	Η	840
CH_2	\rightarrow	CH_3	Η	3600
CH_3	\rightarrow	CH_4	Η	4750
OH	\rightarrow	H_2O	Η	2959
CN	\rightarrow	HCN	H	820
NCO	\rightarrow	HNCO	Η	2800
CH_3O	\rightarrow	CH_3OH	Η	2500

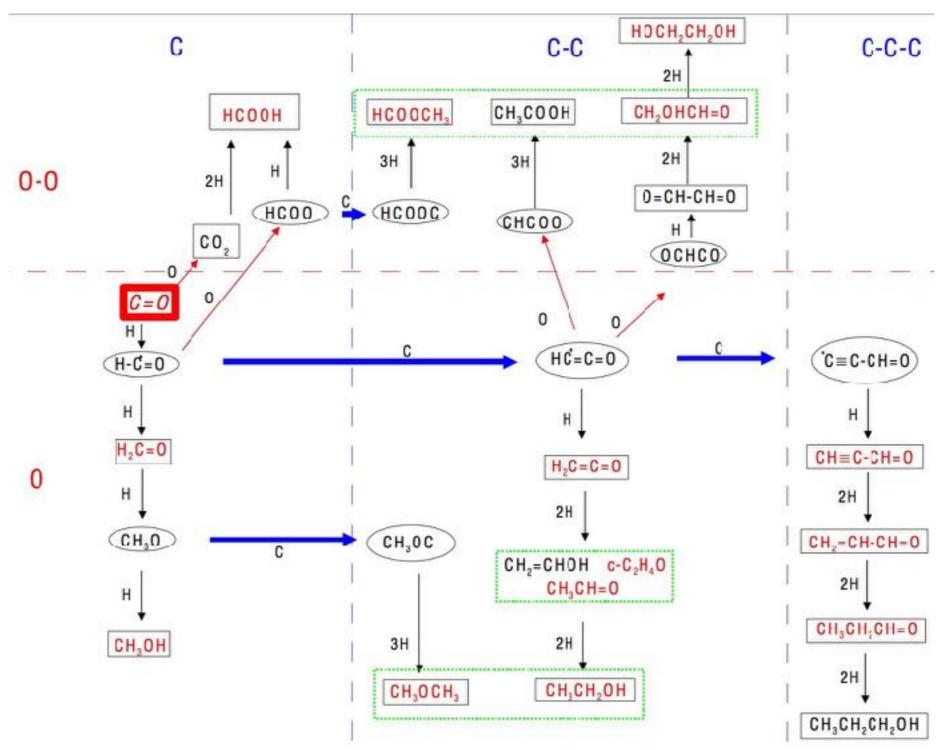
Reactions involving atomic O

$$O + O \rightarrow O_2$$
 (radical-radical)
 $O + H \rightarrow OH$ (radical-radical)
 $O + O_2 \rightarrow O_3$ (barrierless)
 $O + CO \rightarrow CO_2$ (slow)
 $O + SO \rightarrow SO_2$ (?)
 $O + CS \rightarrow OCS$ (?)


Composition of Gas Phase

Species	Gas phase abundance ^a	ice abundance8	
H ₂	0.5		
He^b	0.2	10	
H^c	$2/n^{-1}$	30 <u>25</u>	
CO	8 (-5)	2.5×10^{-5}	
O^d	2.4 (-4)	DOMEST SHOWENESS	
Ce	8 (-7)	77 <u>2-2-</u>	
N_2^f	8 (-5)	?	
H ₂ CO	2 (-8)	10 100	
CH ₃ OH	2 (-9)	2×10^{-6}	
OH	3 (-7)	51 5-1	
H_2O	<7 (-9)	10^{-4}	
NH_3	2 (-8)	8×10^{-4}	
HCN	2 (-8)	?	

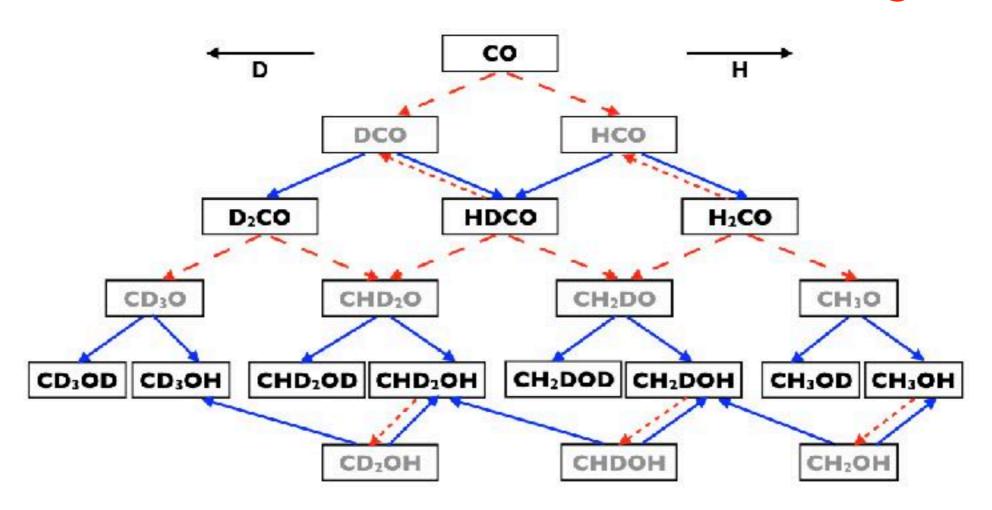
Rules of Engagement


- Diffusion limit (limited by the rate at which species can be brought to the surface)
- At most I highly mobile species (H, D) present on any grain surface but lots of H₂.
- Hydrogenation reactions are highly favored. If no coreactant, H/D will evaporate (unlikely as H/D can react with CO, $H_2CO, ...$).
- C,N & O can scan part of the surface and react with radicals and potentially abundant species (e.g., CO)
- atomic C and N are not very abundant and formation of large molecules is inhibited.
- Immobile species (e.g., CO) will have to wait for roaming atoms and if that takes too long, they will get buried ($\tau_{bur} = 10^4 \text{ yr}$)
- Newly formed radicals may "hop" around (Harris-Kasemo) and find a coreactant (OH + CO—>CO₂ + H)

Surface Reaction Network

Tielens & Hagen 1982, A&A, 114, 245 loppolo et al, 2008, ApJ, 686, 1474

Building up complex species



CO is "inert" in the gas phase but readily "activated on a grain surface. Can we build more complex species? Accretion of C is slow

Deuterium Fractionation

	"N" Hot Core ^a	"O" Hot Core ^b	Hot Corino ^c
HDO/H_2O	3.0 (-3)	3.8 (-3)	3.4 (-2)
D_2O/H_2O			7.0 (-5)
NH_2D/NH_3	6.8 (-3)	$\leq 1.0 \; (-2)$	
HDCO/H ₂ CO	$\leq 5.0 \; (-3)$	6.6 (-3)	3.3 (-2)
D_2CO/H_2CO			9.2 (-2)
CH ₂ DOH/CH ₃ OH	$\leq 4.2 \; (-3)$	5.8 (-3)	3.7 (-1)
CH ₃ OD/CH ₃ OH	$\leq 1.8 \; (-3)$	5.0 (-3)	1.8 (-2)
CHD ₂ OH/CH ₃ OH			7.4 (-2)
CD_3OH/CH_3OH			1.4 (-2)
$DCOOCH_3/HCOOCH_3$		3.9(-2)	1.5 (-1)
HCOOCH ₂ D/HCOOCH ₃		2.5(-2)	
CH ₂ DOCHO/CH ₃ OCHO			6.1 (-2)
CH ₃ OCDO/CH ₃ OCHO			5.9 (-2)
CHD ₂ OCHO/CH ₃ OCHO			12 (-2)
NH ₂ CDO/NH ₂ CHO			$2.0 \ (-2)^d$
NHDCHO/NH ₂ CHO			$2.0 \ (-2)^d$
DNCO/HNCO			$2.0 \ (-2)^d$
CH_2DCN	0.01		
$\mathrm{HDS/H_2S}$	<4.9 (-3)		

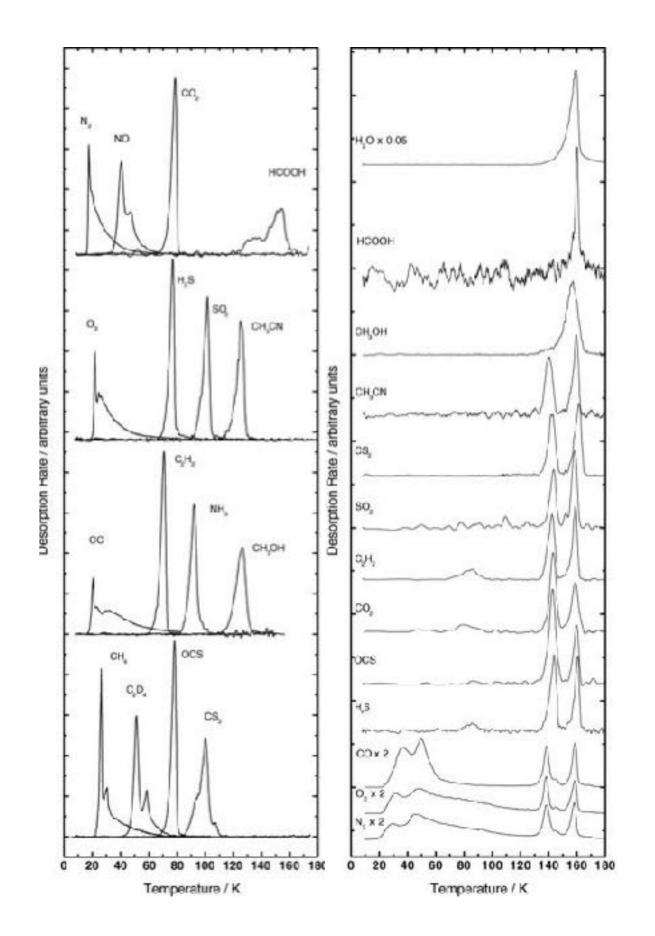
Deuterium Chemistry

- · High deuteration:
- atomic D/H in accreted gas is high (e.g., DCO+/HCO+>>AD)
- HD/H₂ ratio on grains is high
- H-abstraction, D-addition (only on CH_n not with OH)

- HDO/CH₃OD controlled by HD/H₂
- H-D exchange on OH group in H-bonded system (at "high" temperatures)

Tielens 1983, A&A, 119, 177 Charnley et al, 1997, ApJ, 482, L203 Watanabe & Kouchi 2008, Prog Surf Sci, 83, 439 Hidaka et al 2009, ApJ, 702, 291 Nagaoka et al 2007, J Phys Chem A, 111, 3016 Souda et al 2003, J Chem Phys, 119, 6194 Souda et al 2004, Phys Rev Lett, 93, 235502 Ratajczak et al 2009, A&A, 496, L21

Ejection


Thermal Desorption

Sublimation set by binding energy but remember long timescales in space

Sublimation temperature pure ices. T_{sub} : $CO/N_2/O_2 < CO_2 < NH_3 < H_2O/CH_3OH$

Mixed ices: multiple peaks as trace species can be encapsulated

- I) Pure ice temperature
- 2) Volcano desorption when amorphous H₂O ice crystalizes
- 3) At $T_{sub}(H_2O)$: clathrate species

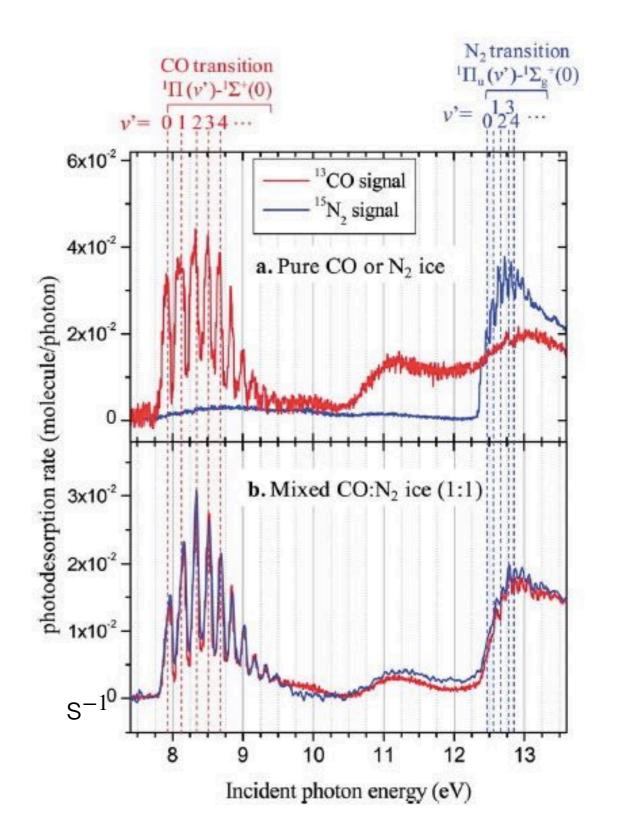

Photodesorption

Table 7.7: Photodesorption yields

Species	Yield ^a	$E_{th}^{\ \ b}$	Reference
		[eV]	
H ₂ O	3×10^{-3}	_	[5, 83, 113]
CO	$1 - 2 \times 10^{-2}$	8	[34, 84]
CO_2	10^{-3}	10.8	[37]
CH_4	$2 - 5 \times 10^{-3}$	9.5	[32]
NH_3	2×10^{-3}	_	[68]
CH_3OH	$< 3 \times 10^{-5c}$	_	[25]
N_2	0.025	12.4	[35]

$$k_{pd} = \mathcal{N}_{uv} \pi a^2 Y_i \theta_i \simeq 3 \times 10^{-11} \left(\frac{Y_i}{10^{-3}}\right) \left(\frac{\theta_i}{10^{-1}}\right)$$

$$X(H_2O) = 10^{-7} \left(\frac{10^4 \text{ cm}^{-3}}{n}\right) \left(\frac{\zeta_{CR}}{3 \times 10^{-17} \text{ s}^{-1}}\right) \left(\frac{Y}{10^{-3}}\right)$$

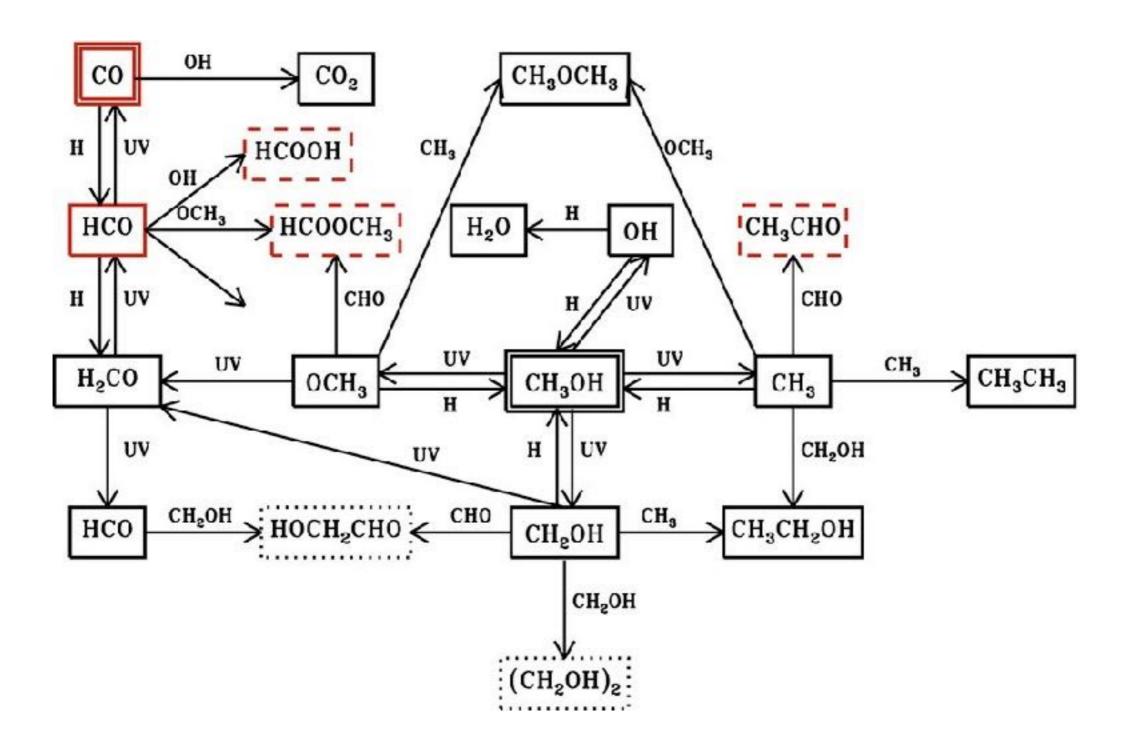
Cosmic Rays

$$k_{cr} = 4\pi \,\mathcal{N}_{cr} \,\pi a^2 \simeq 10^{-5} \left(\frac{a}{1000 \,\text{Å}}\right)$$

$$X(H_2O) = 6 \times 10^{-9} \left(\frac{10^4 \text{ cm}^{-3}}{n}\right) \left(\frac{\zeta_{CR}}{3 \times 10^{-17} \text{ s}^{-1}}\right)$$

$$X(CO) = 3 \times 10^{-6} \left(\frac{10^4 \text{ cm}^{-3}}{n}\right) \left(\frac{\zeta_{CR}}{3 \times 10^{-17} \text{ s}^{-1}}\right)$$

Ejection upon Formation

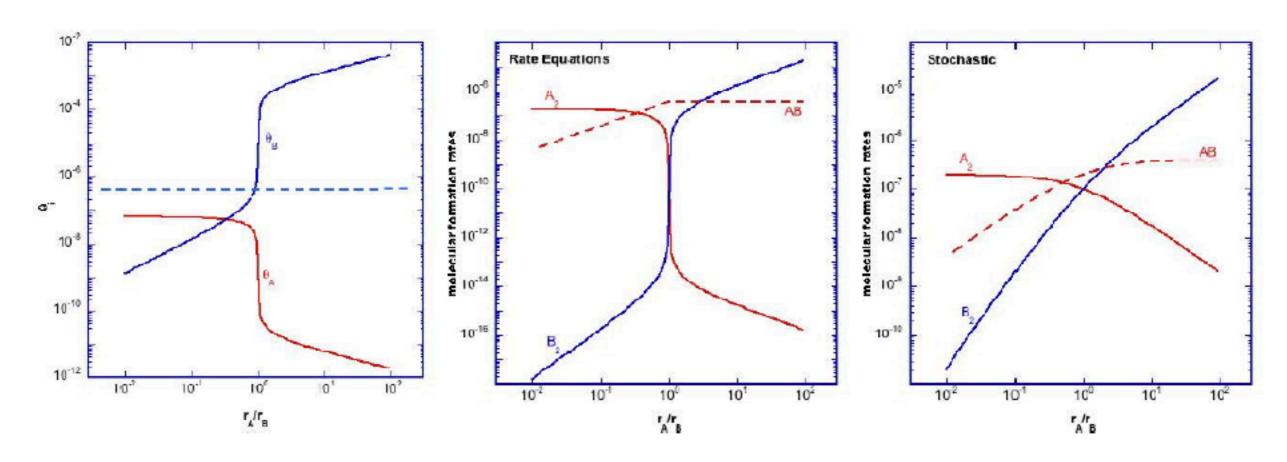

Reaction heat may be transferred to surface bond and cause ejection

$$X(H_2O) = 10^{-6} \left(\frac{10^4 \text{ cm}^{-3}}{n}\right) \left(\frac{\zeta_{CR}}{3 \times 10^{-17} \text{ s}^{-1}}\right) \left(\frac{f_{ej}}{10^{-3}}\right)$$

f_{ej} is not well known:

Theory $(H_2O): f_{ej} = 10^{-3}$

Experiments $(H_2S): f_{ej} > 10^{-3}$



Reaction networks driven by photolysis of interstellar ices

Thermal Processing

- Diffusion of stored radicals (produced by UV photolysis), followed by reaction
- Segregation of ice components
- Polymerization reactions: formation of polyoxymethylene and related compounds

Solution methods: need for stochastic approach

Cannot blindly use rate equation approaches: Concentration of mobile species is either 0 or 1, never 2.

Consider system consisting of A & B that accrete and can form A₂, B₂, and AB.

Stochastic Nature of Surface Chemistry

Rate Equations:
$$\frac{dn_i}{dt} = -n_i \sum_{j} n_j k_{ij} + \sum_{j,l} n_{jl} k_{jl} - n_i k_{ev} n_i + k_{ac} n_i^{gas}$$

For simplicity, consider only reactions without activation barriers (e.g., k's are migration rates). Say, H_2 formation:

$$R(H_2) = \frac{1}{2} k_m n_{\rm H}^2$$

In reality, we have to evaluate the probability to have m species H present

$$\frac{dP_{m}(H)}{dt} = k_{ac}(H)[P_{m-1}(H) - P_{m}(H)] - k_{ev}(H)[mP_{m}(H) - (m+1)P_{m+1}(H)]$$

$$\frac{1}{2}k_{H}\left[(m+2)(m+1)P_{m+2}(H)-m(m-1)P_{m}(H)\right]$$

$$\langle n_{\rm H} \rangle = \sum_{m=1}^{\infty} m P_m(H), \quad \langle n_{\rm H}^2 \rangle = \sum_{m=1}^{\infty} m^2 P_m(H), \quad \sigma_{\rm H}^2 = \langle n_{\rm H}^2 \rangle - \langle n_{\rm H} \rangle^2$$

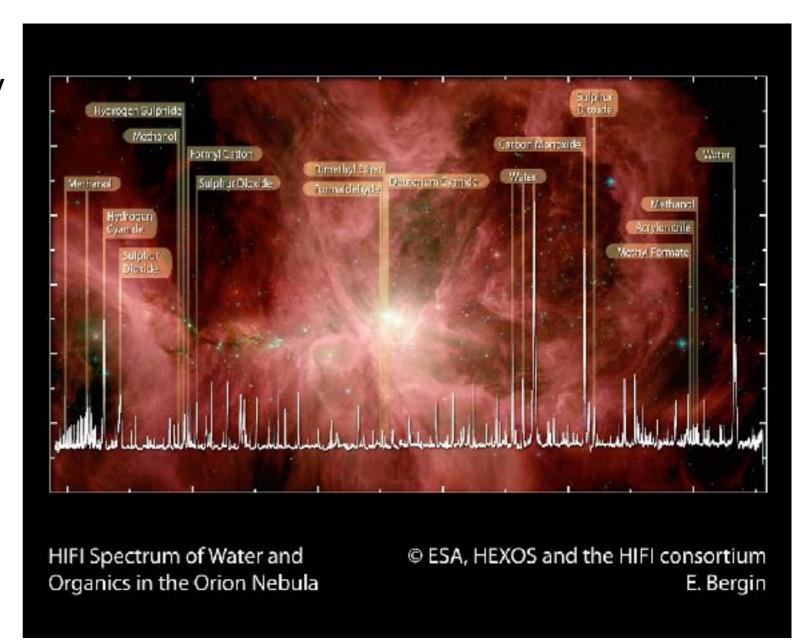
$$R(H_2) = \frac{dN(H_2)}{dt} = k_H \langle n_H(n_H - 1) \rangle \approx k_H \langle n_H^2 \rangle \approx k_H \langle n_H \rangle^2, \text{ only if } n_H \gg 1$$

Surface Chemistry Methods

method	advantage	disadvantage
Rate Equations	Easy to integrate with gas phase chemistry	Incorrect when fluctuations are large
		Semi-empirical correction factors have to be validated every time
Monte Carlo	Correct in stochastic limit	Difficult to combine with gas phase chemistry
	Versatile: can include many characteristics of the surface	Time-consuming
Master equation	Correct in stochastic limit	Very time consuming for all but the simplest systems
	Can evolve grains surface chemistry and gas phase chemistry simultaneously	
Moments equation	Correct in stochastic limit	Need to truncate the moments
		Very time consuming
Hybrid approaches	Master equation approach for mobile species	
	Rate equations for immobile species	

Grain Surface Chemistry: In a Nutshell

- Dust grains are the "watering holes" of astrochemistry where species come to meet and mate.
- In a way, collisions on a grain surface can take very long (up to hours or days)
- Tunneling is key to hydrogenation (and deuteration)
- Initial conditions play a key role
 - O goes to H₂O through e.g., O₂ and O₃
 - C (e.g., CO) goes to H₂CO and CH₃OH
 - N goes to NH₃ while N₂ is inert
 - S goes to SO/SO2 and CS goes to OCS (?)
 - D enrichment is driven by high D/H (gas) and high HD/H₂ on the grain

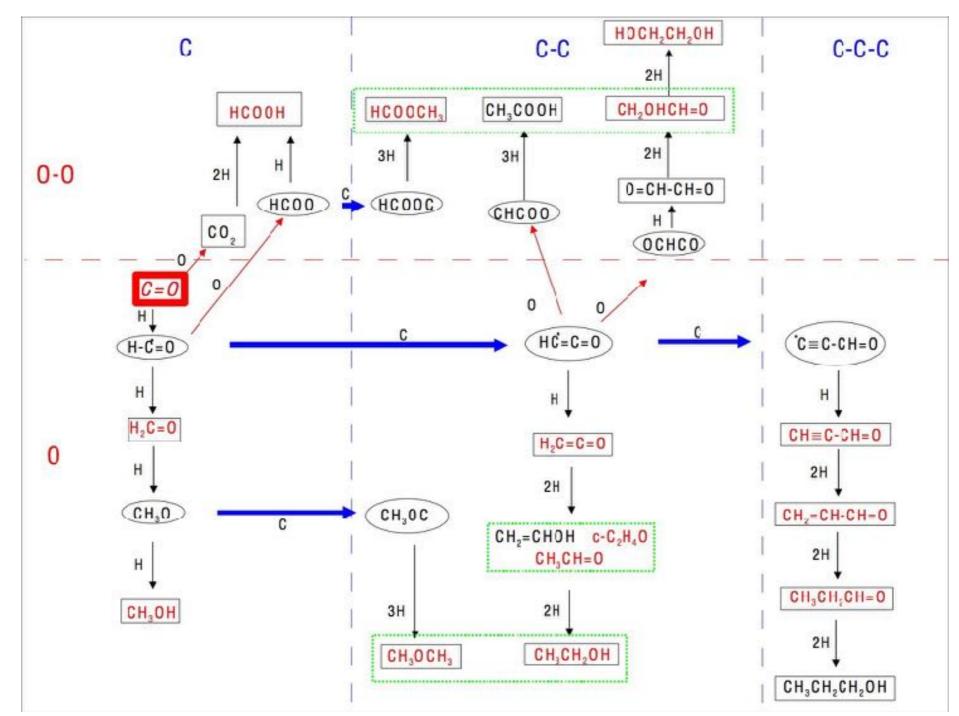

Exercises

- Calculate the H₂ binding energy and surface coverage at 20 K (see slide 7).
- If the diffusion barrier is 30% of the binding energy, calculate the timescale to scan the whole surface for H at 10K and compare graphically with the accretion time and evaporation timescale as a function of grain size. Do the same for atomic O.
- If the reaction barrier for H with CO is 1000 K and for H with H₂CO is 1200 K, calculate the relative probabilities for CO and H₂CO to react with H. Why could CH₃OH still be the dominant reservoir of carbon in interstellar ice ?

SOM in Hot Cores/Corinos

Simple Organic Molecules ("SOM")

- Warm dense gas with rich organic inventory: of relatively simple organic molecules
 - CH₃OH, CH₃CH₂OH,
 CH₃OCH₃, H₂CO, CH₃CHO,
 HCOOH, NH₂CHO, ...
 - HCN, CH₃CN, CH₃CH₂CN, ...
- Large deuterium fractionations
- Driven by evaporation of ice mantles formed in cold phase

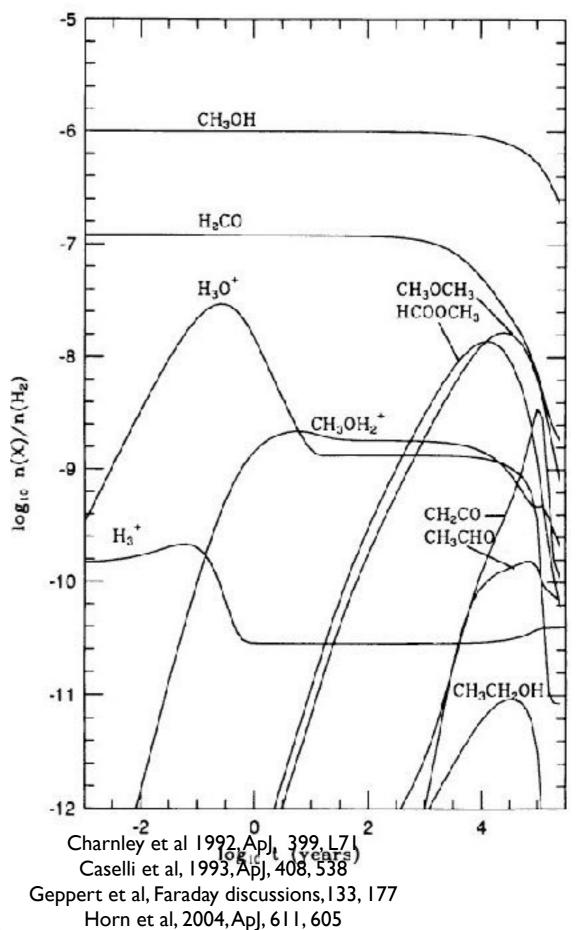


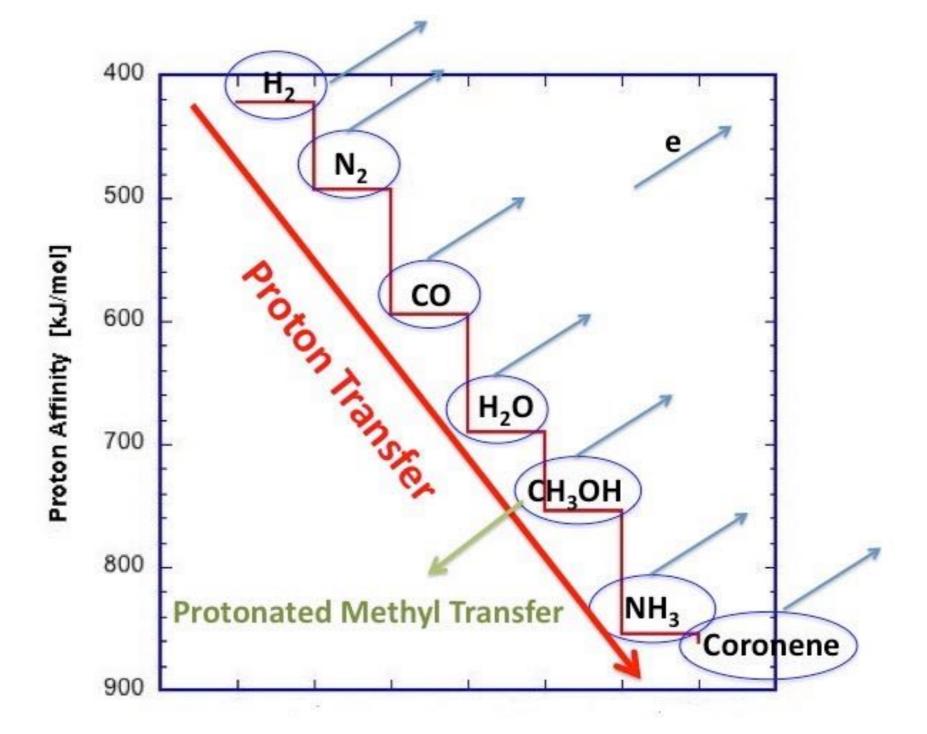
Blake et al, 1987, ApJ, 315, 621 Ceccarelli et al, 2007, PPV, 47 Bergin et al 2010, A&A, 521, L20

Origin of "SOM"

Deuterium fractionation implies formed from coldreservoir-progenitors

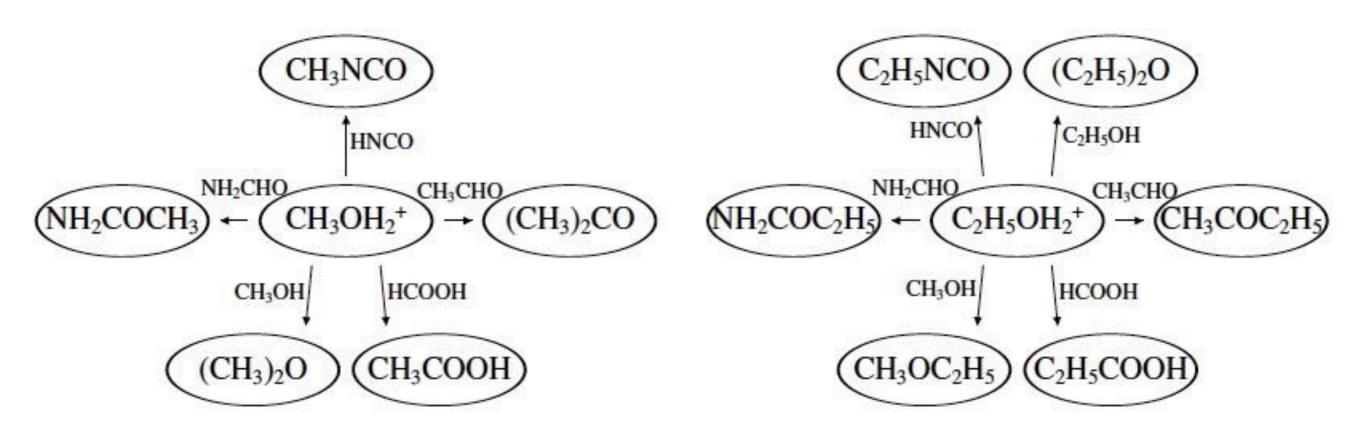
- Surface chemistry in cold regions
- Photolysis of ices
- Evaporation followed by gas phase reactions
- Ion molecule chemistry in ices




Building up complex species

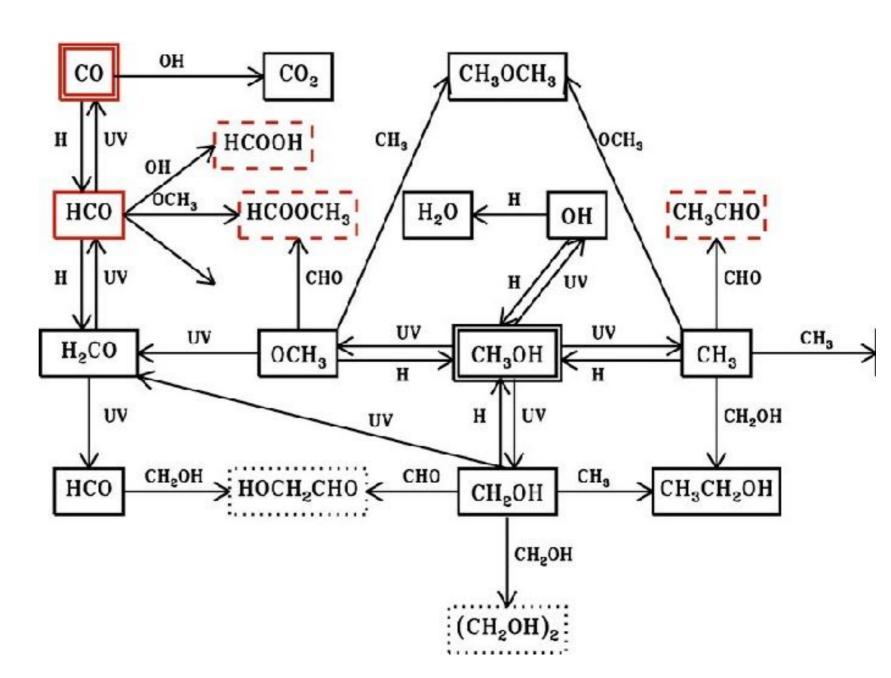
But C/CO=10⁻² (CR-induced photon field dissociates CO)

Evaporating Ices

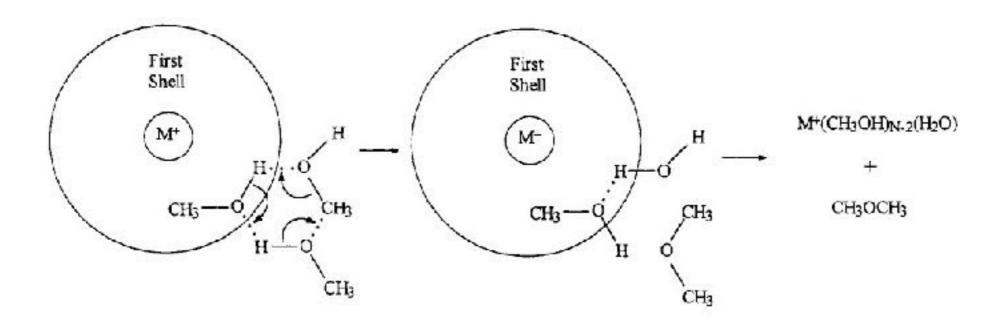

- Evaporating ice molecules drive rich chemistry
- Protonated methanol & methyl transfer
- Issues:
 - Experimental studies disagree
 - formation of intermediaries inhibited
 - Recombination leads to fragmentation
 - Ammonia may "save" the day as a proton scavenger
 - Chemical clock ~3x10⁴ yr incompatible with hot corinos

Proton Transfer

$$X_i = \frac{k_e X_e}{k_i} \simeq 10^{-5} \left(\frac{X_e}{10^{-8}} \right)$$


Alkyl Transfer from Alcohols

Photolyzed Ices

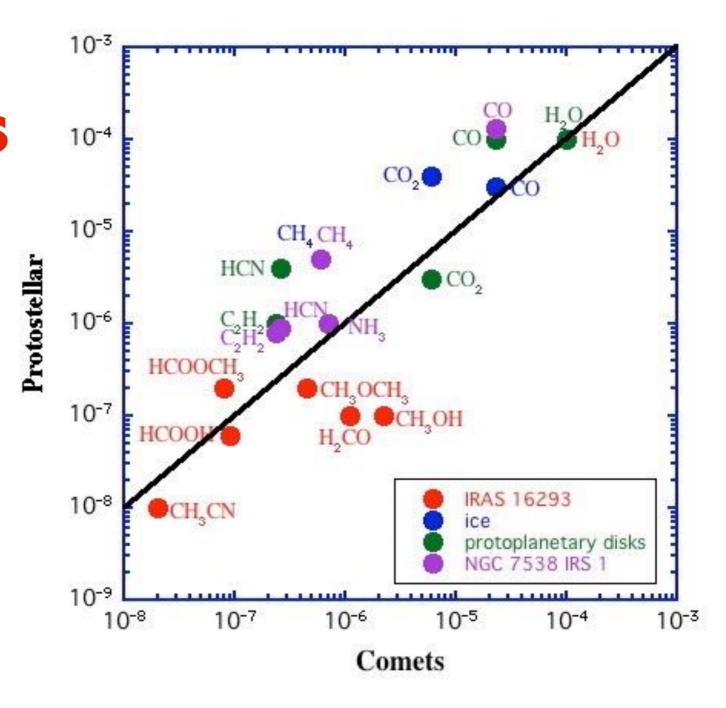

UV photolysis/ion bombardment & warm up

- Radical production (CH₃ & others)
- Recombination

- Issues:
 - Chemical specificity
 - Polymerization

Charged Ices

Ion-molecule Chemistry in Ices


- Ices are charged & charges are localized:
 - Na, PAHs
 - OCN-
 - Polarization charge
- Warm-up leads to segregation
- H-bonding
- Stereochemistry
- Methanol drives chemistry
- Near evaporation, "droplets" may conduce methyl transfer without fragmentation

charged ices: Bouwman et al, 2011, A&A, 529, 46; Schutte et al, 2003, 398, 1049; Demyk et al, 1998, A&A, 339, 553, Balog et al 2009, Phys Rev Lett, 201, 73003

The Organic Inventory of Comets

Comets, and hence the Earth, sampled many reservoirs with a diverse chemical history

ice chemistry
Hot Core chemistry
Warm gas
photochemistry

